R18

Q.P. Code: 18EC0428

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year II Semester Supplementary Examinations February-2022 MICROWAVE THEORY AND TECHNIQUES

(Electronics and Communication Engineering)

			(Electronics and Communication Engineering)	
Ti	me	3 h	ours Max. Marks	: 60
			PART-A	
			(Answer all the Questions $5 \times 2 = 10$ Marks)	
	1	a	Distinguish between the waveguide and transmission lines.	2M
		b	What do you mean by Faraday rotation?	2M
		c	What is an attenuator and mention different attenuator?	2M
		d	What is transit time?	2M
		e	List the possible errors in VSWR measurement.	2M
			PART-B	
			(Answer all Five Units 5 x $10 = 50$ Marks)	
			UNIT-I	
	2	Re	late the Wavelengths and Impedance of the transverse electric (TE) field in terms of	10M
			coff frequency.	TOTAL
			OR	
	3	a	A rectangular metal wave guide filled with a dielectric material of relative	4M
			Permittivity ε_r =4 has the inside dimensions 3.0cm×1.2cm. Evaluate the cut off	
			frequency for the dominant mode.	
		b	Explain briefly on: (i) Guide wavelength (ii) dominant mode and (iii) over mode	6M
			conditions in waveguide	
			UNIT-II	
	4	a	Explain the mechanism of electromagnetic wave propagation in Rectangular	6M
			Waveguide.	OIVI
		b	Explain the working of coaxial transmission line with the help of a cross-section	4M
			OR	
	5	a	Discuss about the excitation modes in circular waveguides.	4M
		b	Explain the working of strip line transmission line with the help of a neat sketch of	6M
			its field distribution. Obtain the expression for characteristic impedance.	
			UNIT-III	
	6	a	What is the principle of phase shifter? Sketch the diagram of phase shifter and	5M
	Ū	••	discuss the working mechanism.	SIVI
		b	Explain the significance and formulation of S-matrix in detail.	5M
		~	OR	5111
	7	a	Deduce the S-matrix for directional coupler.	5M
	i j	b	State and prove the following properties of S-parameters: (i) Zero diagonal property	5M
			(ii) Unitary property, and (iii) Phase shift property	

Q.P. Code: 18EC0428

R18

UNIT-IV

8 Discuss in detail about the working of Reflex Klystron with mechanism and modes of oscillation.

OR

- 9 a A reflex Klystron operates at the peak of n= 1 or 3/4 mode. The dc power input is 5M 40mw and ratio of V1 over V0 is 0.278
 - i) Determine the efficiency of the reflex Klystron.
 - ii) Find the total power output in mW.
 - iii) The 20% of the power delivered by the electron beam is dissipated in the cavity walls find the power delivered to the load.
 - **b** Explain the process of velocity modulation of a Reflex Klystron.

5M

UNIT-V

- 10 a With the help of a neat sketch, briefly explain the functions of different blocks of a 5M microwave bench.
 - **b** Explain how high values of VSWR(S>20) can be measured directly from the **5M** VSWR meter using the experimental set-up.

OR

11 a Explain in detail about Swept Frequency method of Q Measurement.
5M
b Explain the measurement of Quality factor (Q) using slotted line method.
5M

END